

Article

Hydrogen-Bonding-Driven Preorganized Zinc Porphyrin Receptors for Efficient Complexation of C, C, and C Derivatives

Zong-Quan Wu, Xue-Bin Shao, Chuang Li, Jun-Li Hou, Kui Wang, Xi-Kui Jiang, and Zhan-Ting Li J. Am. Chem. Soc., 2005, 127 (49), 17460-17468• DOI: 10.1021/ja056509h • Publication Date (Web): 17 November 2005 Downloaded from http://pubs.acs.org on March 25, 2009

More About This Article

Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Links to the 16 articles that cite this article, as of the time of this article download
- Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML

Hydrogen-Bonding-Driven Preorganized Zinc Porphyrin Receptors for Efficient Complexation of C₆₀, C₇₀, and C₆₀ Derivatives

Zong-Quan Wu, Xue-Bin Shao, Chuang Li, Jun-Li Hou, Kui Wang, Xi-Kui Jiang, and Zhan-Ting Li*

Contribution from the State Key Laboratory of Bio-Organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Lu, Shanghai 200032, China

Received September 27, 2005; E-mail: ztli@mail.sioc.ac.cn.

Abstract: This paper describes the self-assembly of a new class of foldamer-based molecular tweezers, whose rigid folded conformations are stabilized by intramolecular hydrogen bonding. Two zinc porphyrin units are introduced to the ends of molecular tweezers Zn_21 and Zn_22 , while three zinc porphyrin units are incorporated to the S-shaped bi-tweezers Zn₃3, which may be regarded as a combination of two Zn₂1 molecules. Due to the preorganized U-shaped feature, Zn₂1 and Zn₂2 are able to strongly complex C₆₀, C70, and C60 derivative 25 in chloroform or toluene in a 1:1 binding stoichiometry, whereas Zn33, which possesses two tweezer units, complexes the guests in a 1:2 stoichiometry. More stable complex Zn₃3·24 is formed between Zn_33 and 24, a linear molecule bearing two C_{60} moleties at the ends, as a result of the cooperative interaction of two binding sites. Chiral induction is observed for all the three receptors upon complexation with C_{60} -incorporated chiral phenylalanine derivative **29**, although the complexation of **29** by the folding receptors is pronouncedly weaker than that of C₆₀ and **25** due to increased steric hindrance. The driving force for the formation of the complexes is the well established $\pi - \pi$ stacking between the zinc porphyrin and fullerene units. The ¹H and ¹³C NMR, UV-vis, fluorescent, and circular dichroism spectroscopy have been used to investigate the complexing behavior of the folding receptors and the fullerene guests. The association constants of the corresponding complexes in toluene and chloroform (if possible) have been evaluated with the UV-vis and fluorescent titration experiments.

Introduction

Efficient recognition of the synthetic receptor for a special molecule or ion requires high structural and binding-site complementarity between the receptor and the guest. For spherical guests, macrocyclic receptors are usually of high efficiency because the recognition sites in these receptors are pre-organized in the cavity to favorably surround a specific guest.¹ Another class of efficient receptors for spherical guests are rigid, covalently bonded molecular tweezers, which are able to employ their two "jaws" to closely hold a binding sitematching "prey".² Nevertheless, the synthesis of both kinds of receptors are usually of low efficiency or time consuming.³ Moreover, the structural modifications for achievement of a sitetailored recognition are frequently difficult.

Fullerenes and their derivatives are a class of attractive spherical molecules that have been applied extensively in discrete research areas. After the first reports of the cocrystallization of C_{60} or C_{70} with the porphyrin unit, the search for highly efficient porphyrin receptors has become intensified.⁴ A number of bisporphyrin⁵ and multiporphyrin receptors⁶ have been developed and the resulting porphyryn–fullerene assemblies have brought forward many interesting photophysical,

For recent reviews and examples, see: (a) Beer, P. D.; Gale, P. A. Angew. Chem., Int. Ed. 2001, 40, 486. (b) Sessler, J. L.; Seidel, D. Angew. Chem., Int. Ed. 2003, 42, 5134. (c) Choi, K.; Hamilton, A. D. J. Am. Chem. Soc. 2003, 125, 10241. (d) Gokel, G. W.; Leevy, W. M.; Weber, M. E. Chem. Rev. 2004, 104, 2723.

Rev. 2004, 104, 2723.
 (2) (a) Zimmerman, S. C. Top. Curr. Chem. 1993, 165, 71. (b) Harmata, M. Acc. Chem. Res. 2004, 37, 862.

^{(3) (}a) Izatt, R. M.; Christensen, J. J. Synthetic Moltidentate Macrocyclic Compounds; Academic Press: New York, 1978; p 324. (b) Weber, E.; Toner, J. L.; Goldberg, I.; Vögtle, F.; Laidler, D. A.; Stoddart, J. F.; Bartsch, R. A.; Liotta, C. L. Crown Ethers and Analogues; Wiley: New York, 1989; p 558. (c) Gokel, G. W. Crown Ethers and Cryptands; The Royal Society of Chemistry: Cambridge, UK, 1991; p 191. (d) Hiraoka, M., Ed. Crown Ethers and Analogous Compounds; Elsevier: Amsterdam, 1992; p 485.

^{(4) (}a) Sun, Y.; Drovetskaya, T.; Bolksar, R. D.; Bau, R.; Boyd, W.; Reed, C. A. J. Org. Chem. 1997, 62, 3642. (b) Boyd, P. D. W.; Hodgson, M. C.; Chaker, L.; Rickard, C. E. F.; Oliver, A. G.; Brothers, P. J.; Bolksar, R. D.; Tham, F. S.; Reed, C. A. J. Am. Chem. Soc. 1999, 121, 10487. (c) Reed, C. A.; Fackler, N. L.; Kim, K.-C.; Stasko, D.; Evans, D. R.; Boyd, P. D. W.; Rickard, C. E. F. J. Am. Chem. Soc. 1999, 121, 6314. (d) Olmstead, M. M.; Costa, D. A.; Maitra, K.; Noll, B. C.; Phillips, S. L.; Van Calcar, P. M.; Balch, A. L. J. Am. Chem. Soc. 1999, 121, 7090. (e) Stevenson, S.; Rice, G.; Glass, T.; Harich, K.; Cromer, F.; Jordan, M. R.; Craft, J.; Hadju, E.; Bible, R.; Olmstead, M. M.; Maitra, K.; Fisher, A. J.; Balch, A. L.; Dorn, H. C. Nature 1999, 401, 55.
(5) For recent examples, see: (a) Tashiro, K.; Aida, T.; Zheng, L-Y.; Kinhara

Balch, A. L.; Dorn, H. C. Nature 1999, 401, 55.
(5) For recent examples, see: (a) Tashiro, K.; Aida, T.; Zheng, J.-Y.; Kinbara, K.; Saigo, K.; Sakamoto, S.; Yamguchi, K. J. Am. Chem. Soc. 1999, 121, 9477. (b) Zheng, J.-Y.; Tashiro, K.; Hirabayashi, Y.; Kinbara, K.; Saigo, K.; Aida, T.; Sakamoto, S.; Yamguchi, K. Angew. Chem., Int. Ed. 2001, 40, 1858. (c) Shoji, Y.; Tashiro, K.; Aida, T. J. Am. Chem. Soc. 2004, 126, 6570. (d) D'Souza, F.; Gadde, S.; Zandler, M. E.; Itou, M.; Araki, Y.; Ito, O. Chem. Commun. 2004, 2276. (e) Dudiè, M.; Lhoták, P.; Stibor, I.; PetøíÅková, H.; Lang, K. New J. Chem. 2004, 28, 85. (f) Kieran, A. L.; Pascu, S. I.; Jarrosson, T.; Sanders, J. K. M. Chem. Commun. 2005, 1276. (g) D'Souza, F.; Chitta, R.; Gadde, S.; Zandler, M. E.; Sandanayaka, A. S. D.; Araki, Y.; Ito, O. Chem. Commun. 2005, 1279.

photochemical, and/or electrochemical properties.⁷ In the past decade, foldamers, linear molecules that are driven by noncovalent forces to adopt well-established secondary structures, have received increasing attention.8 Because of its strength and directionality, hydrogen bonding is an ideal driving force for the construction of foldamers. A number of foldamers with rigid and predictable conformations have been developed based on rationally designed aromatic amide oligomers.⁹⁻¹⁶ Some of the foldamers have been reported as new receptors for recognition of saccharides^{14a,14d} or alkylammoniums^{14e} or encapsulation of water.15a Example of foldamers that can promote oxidation of pyridine has also been described.15b We envisioned that introduction of additional binding units to rationally designed folding scaffolds would lead to new generation of tailored receptors with robust recognition ability. In this paper, we report the self-assembly of such a class of hydrogen-bonding-driven porphyrin-appended folding receptors, which exhibit remarkably high binding affinity for C_{60} , C_{70} , and C_{60} derivatives in chloroform and toluene.17-19

- (6) For recent examples, see: (a) Kubo, Y.; Sugasaki, A.; Ikeda, M.; Sugiyasu, K.; Sonoda, K.; Ikeda, A.; Takeuchi, M.; Shinkai, S. Org. Lett. 2002, 4, 925. (b) Ayabe, M.; Ikeda, A.; Kubo, Y.; Takeuchi, M.; Shinkai, S. Angew. Chem., Int. Ed. 2002, 41, 2790. (c) Shirakawa, M.; Fujita, N.; Shinkai, S. J. Am. Chem. Soc. 2003, 125, 9902. (d) Hasobe, T.; Imahori, H.; Kamat, P. V.; Ahn, T. K.; Kim, S. K.; Kim, D.; Fujimoto, A.; Hirakawa, T.; Fukuzumi, S. J. Am. Chem. Soc. 2005, 127, 1216.
- (7) For a recent example of layered aggregates of porphyrin and C₆₀, see: Wolffs, M.; Hoeben, F. J. M.; Beckers, E. H. A.; Schenning, A. P. H. J.; Meijier, E. W. J. Am. Chem. Soc. **2005**, 127, 13484.
- Wollts, M., Hoever, P. J. M., Beckels, E. H. A., Scheining, A. F. H. J., Meijier, E. W. J. Am. Chem. Soc. 2005, 127, 13484.
 (8) For reviews, see: (a) Seebach, D.; Matthews, J. L. Chem. Commun. 1997, 2015. (b) Gellman, S. H. Acc. Chem. Res. 1998, 31, 173. (c) Stigers, K. D.; Soth, M. J.; Nowick, J. S. Curr. Opin. Chem. Biol. 1999, 3, 714. (d) Hill, D. J.; Mio, M. J.; Prince, R. B.; Hughes, T. S.; Moore, J. S. Chem. Rev. 2001, 101, 3893. (e) Cubberley, M. S.; Iverson, B. L. Curr. Opin. Chem. Biol. 2001, 5, 650. (f) Sanford, A. R.; Gong, B. Curr. Org. Chem. 2003, 7, 1649. (g) Schmuck, C. Angew. Chem., Int. Ed. 2003, 42, 2448. (h) Huc, I. Eur. J. Org. Chem. 2004, 17. (i) Cheng, R. P. Curr. Opin. Struct. Biol. 2004, 14, 512. (j) Sanford, A.; Yamato, K.; Yang, X. W.; Yuan, L. H.; Han, Y. H.; Gong, B. Eur. J. Org. Chem. 2004, 271, 1416. (k) Licini, G.; Prins, L. J.; Scrimin, P. Eur. J. Org. Chem. 2005, 969.
- (9) Hamuro, Y.; Geib, S. J.; Hamilton, A. D. J. Am. Chem. Soc. 1996, 118, 7529.
- (10) Corbin, P. S.; Zimmerman, S. C.; Thiessen, P. A.; Hawryluk, N. A.; Murray, T. J. J. Am. Chem. Soc. 2001, 123, 10475.
- (11) (a) Gong, B. et al. *Proc. Natl. Acad. Sci. U.S.A.* 2002, *99*, 11583. (b) Yang, X. W.; Yuan, L. H.; Yamato, K.; Brown, A. L.; Feng, W.; Furukawa, M.; Zeng, X. C.; Gong, B. *J. Am. Chem. Soc.* 2004, *126*, 3148. (c) Hunter, C. A.; Spitaleri, A.; Tomas, S. *Chem. Commun.* 2005, 3691.
 (12) Kolomiets, E.; Berl, V.; Odriozola, I.; Stadler, A.-M.; Kyritsakas, N.; Lehn, V.; Odriozola, I.; Stadler, A.-M.; Kyritsakas, N.; Lehn, V.; Odriozola, Y.; Stadler, A.-M.; Kyritsakas, N.; Lehn, V.; Yatakas, Y.; Yatakas, Y.; Yatakas, Y.; Yatakas, Y.; Yatakas, Y.; Yatakas, Yataka
- Kolomiets, E.; Berl, V.; Odriozola, I.; Stadler, A.-M.; Kyritsakas, N.; Lehn, J.-M. Chem. Commun. 2003, 2868.
 Huang, B.; Prantil, M. A.; Gustafson, T. L.; Parquette, J. R. J. Am. Chem.
- (13) Huang, B.; Prantil, M. A.; Gustafson, I. L.; Parquette, J. R. J. Am. Chem Soc. 2003, 125, 14518.
- (14) (a) Hou, J.-L.; Shao, X.-B.; Chen, G.-J.; Zhou, Y.-X.; Jiang, X.-K.; Li,
 Z.-T., J. Am. Chem. Soc. 2004, 126, 12386. (b) Wu, Z.-Q.; Jiang, X.-K.;
 Zhu, S.-Z.; Li, Z.-T., Org. Lett. 2004, 6, 229. (c) Zhu, J.; Wang, X.-Z.;
 Chen, Y.-Q.; Jiang, X.-K.; Chen, X.-Z.; Li, Z.-T., J. Org. Chem. 2004, 69,
 6221. (d) Yi, H.-P.; Shao, X.-B.; Hou, J.-L.; Li, C.; Jiang, X.-K.; Li, Z.-T.
 New J. Chem. 2005, 29, 1213. (e) Li, C.; Ren, S.-F.; Hou, J.-L.; Yi, H.-P.;
 Zhu, S.-Z.; Jiang, X.-K.; Li, Z.-T. Angew. Chem., Int. Ed. 2005, 44, 5725.
- (15) (a) Garric, J.; Léger, J.-M.; Huc, I. Angew. Chem., Int. Ed. 2005, 44, 1954.
 C. (b) Dolain, C.; Zhan, C.; Léger, J.-M.; Daniels, L.; Huc, I. J. Am. Chem. Soc. 2005, 127, 2400.
- (16) (a) Kanamori, D.; Okamura, T.; Yamamoto, H.; Ueyama, N. Angew. Chem., Int. Ed. 2005, 44, 969. (b) Masu, H.; Sakai, M.; Kishikawa, K.; Yamamoto, M.; Yamaguchi, K.; Kohmoto, S. J. Org. Chem. 2005, 70, 1423.
- (17) For recent examples of host-gust chemistry based on other kinds of foldamers, see: (a) Berl, V.; Huc, I.; Khoury, R. G.; Lehn, J.-M. Chem. Eur. J. 2001, 7, 2810. (b) Tanatani, A.; Hughes, T. S.; Moore, J. S. Angew. Chem., Int. Ed. 2002, 41, 325. (c) Inouye, M.; Waki, M.; Abe, H. J. Am. Chem. Soc. 2004, 126, 2022. (d) Maurizot, V.; Léger, J.-M.; Guionneau, P. Russ. J. Chem. 2004, 53, 1572. (e) Hou, J.-L.; Jia, M.-X.; Jiang, X.-K.; Li, Z.-T.; Chen, G.-J. J. Org. Chem. 2004, 69, 6228. (f) Arunkumar, E.; Ajayaghosh, A.; Daub, J. J. Am. Chem. Soc. 2005, 127, 3156. (g) Chang, K.-J.; Kang, B.-N.; Lee, M.-H.; Jeong, K.-S. J. Am. Chem. Soc. 2005, 127, 12214.
- (18) Metalated "jaws porphyrin" hosts have been reported for complexation of C₆₀ and C₇₀, see: (a) Sun, D.; Tham, F. S.; Reed, C. A.; Chaker, L.; Burgess, M.; Boyd, P. D. W. *J. Am. Chem. Soc.* **2000**, *122*, 10704. (b) Sun, D.; Tham, F. S.; Reed, C. A.; Chaker, L.; Boyd, P. D. W. *J. Am. Chem. Soc.* **2002**, *124*, 6604.

Results and Discussion

Three porphyrin foldamer receptors Zn₂**1**, Zn₂**2**, and Zn₃**3** have been designed, which were based on the recent observations that intramolecular three-centered hydrogen bonding²⁰ can induce linear anthranilamide oligomers to adopt rigid zig-zag or straight conformation.^{14c,21} Both Zn₂**1** and Zn₂**2** were incorporated with two porphyrin units. It was expected that, due to the existence of the intramolecular hydrogen bonding, the porphyrin units in both compounds would be arranged roughly parallel to each other to produce two noncovalently bonded molecular tweezers. Compound Zn₃**3** might be regarded as combination of two molecules of Zn₂**1**.

The synthesis of Zn_21 is presented in Scheme 1. Compound 4^{22} was first alkylated to produce aldehyde 5, which then reacted

with 6^{23} and pyrrole in refluxing propionic acid to afford porphyrin 8^{24} The latter was then hydrolyzed with sodium hydroxide and further converted to acyl chloride 10 with thionyl chloride. Treatment of 10 with 11^{25} afforded H₄1, which then reacted with zinc acetate to give Zn₂1 in quantitative yield. For the synthesis of Zn_22 (Scheme 2), compound 13^{26} was first prepared from nitration of 12 in concentrated sulfuric acid and then reacted with 6 and 7 in refluxing propionic acid to afford porphyrin 14. This intermediate was reduced to amine 15 and then reacted with 16^{27} to yield compound H₄2, which was then treated with zinc acetate in methanol and dichloromethane to afford Zn_22 in high yield.

The synthetic route for Zn_33 is shown in Scheme 3. Porphyrin 17 was first prepared from the reaction of compounds 10 and

- (19) (a) Schuster, D. I.; Cheng, P.; Jarowski, P. D.; Guldi, D. M.; Luo, C.; Echegoyen, L.; Pyo, S.; Holzwarth, A. R.; Braslavsky, S. E.; Williams, R. M.; Klihm, G. J. Am. Chem. Soc. 2004, 126, 7257. (b) D'Souza, F.; Smith, P. M.; Zandler, M. E.; McCarty, A. L.; Itou, M.; Araki, Y.; Ito, O. J. Am. Chem. Soc. 2004, 126, 7898. (c) Sutton, L. R.; Scheloske, M.; Pirner, K S.; Hirsch, A.; Guldi, D. M.; Gisselbrecht, J.-P. J. Am. Chem. Soc. 2004, 3., Tinsch, A., Outd, D. M., Olschlern, J. J. Am. Chem. Soc. 2004, 126, 10370. (d) Hasobe, T.; Kamat, P. V.; Absalom, M. A.; Kashiwagi, Y.; Sly, J.; Crossley, M. J.; Hosomizu, K.; Imahori, H.; Fukuzumi, S. J. Phys. Chem. B 2004, 108, 12865. (e) Nakamura, T.; Fujitsuka, M.; Araki, Y.; Ito, O.; Ikemoto, J.; Takimiya, K.; Aso, Y.; Otsubo, T. J. Phys. Chem. B 2004, 108, 10700. (f) Imahori, H. Org. Biomol. Chem. 2004, 2, 1425. (g) Imahori, H.; Kimura, M.; Hosomizu, K.; Fukuzumi, S. J. Photochem. Photobiol. A: Chem. 2004, 166, 57. (h) Chukharev, V.; Tkachenko, N. V.; Efimov, A.; Guldi, D. M.; Hirsch, A.; Scheloske, M.; Lemmetyinen, H. J. Phys. Chem. B 2004, 108, 16377. (i) Isosomppi, M.; Tkachenko, N. H. J. Phys. Chem. B 2004, 105, 105 Jr. (1) Isosomph. M., Tkachen, K. V., Efinov, A.; Lemmetyinen, H. J. Phys. Chem. A 2005, 109, 4881. (j) Cho, Y.-J.; Ahn, T. K.; Song, H.; Kim, K. S.; Lee, C. Y.; Seo, W. S.; Lee, K.; Kim, S. K.; Kim, D.; Park, J. T. J. Am. Chem. Soc. 2005, 127, 2380. (k) Straight, S. D.; Andreasson, J.; Kodis, G.; Moore, A. L.; Moore, T. A.; Gust, D. J. Am. Chem. Soc. 2005, 127, 2717. (1) F. D'Souza, R. Chitta, S. Gadde, M. E. Zandler, A. L. McCarty, A. S. D. Sandanayaka, Y. Araki, O. Ito, *Chem. Eur. J.* **2005**, *11*, 4416.
- Const, Chem. Eur. J. 2001, 7, 4337.
 Chen, Y.-Q.; Wang, X.-Z.; Shao, X.-B.; Hou, J.-L.; Chen, X.-Z.; Jiang, X.-K.; Li, Z.-T. Tetrahedron 2004, 60, 10253.
- (22) Filler, R.; Lin, S.; Zhang, Z. J. Fluorine Chem. 1995, 74, 69.
 (23) Plater, M. J.; Aiken, S.; Bourhill, G. Tetrahedron 2002, 58, 2405.
- (24) Salom-Roig, X. J.; Chambron, J.-C.; Goze, C.; Heitz, V.; Sauvage, J.-P. Eur. J. Org. Chem. 2002, 3276. (25)Hamuro, Y.; Geib, S. J.; Hamilton, A. D. J. Am. Chem. Soc. 1997, 119,
- 10587. (26)Mukerjee, D. D.; Shukla, S. K.; Chowdhary, B. L. Arch. Pharm. 1981,
- 314 991 (27) Birkinshaw, R. Biochem. J. 1932, 26, 441.

ĊI Scheme 3

16

11 in chloroform, and then compound 18 was obtained by alkylation of 4 in hot DMF. Treatment of 18 with dipyrrole 19 in hot propionic acid produced porphyrin diester 20. This intermediate was then hydrolyzed with sodium hydroxide and followed by treatment with thionyl chloride to afford 22. The latter intermediate was further reacted with 17 in chloroform to yield porphyrin trimer H_63 . Finally, treatment of H_63 with zinc acetate produced Zn₃3 quantitatively. Compounds Zn₂1, Zn_22 , and Zn_33 have been characterized by the ¹H, ¹³C NMR,

Figure 1. Partial ¹H NMR spectrum of (a) Zn_21 (4.0 mM) + C_{70} (1:1), (b) Zn_21 (4.0 mM), (c) Zn_21 (4.0 mM) + C_{60} (1:1), (d) Zn_43 (2.0 mM), (e) Zn_43 (2.0 mM) + C_{60} (1:2), (f) Zn_22 (4.0 mM), and (g) Zn_22 (4.0 mM) + C_{60} (1:1) in CDCl₃ at 25 °C.

and (HR) mass spectroscopy or microanalysis and are of good solubility in organic solvents such as chloroform and toluene.

Previous X-ray and spectroscopic investigations have revealed a rigid planar conformation for the diamide skeletons in Zn_21 , Zn_22 , and Zn_33 due to the intramolecular three-centered hydrogen bonding.^{11a,14c,21} Molecular modeling (see Supporting Information) showed that the two porphyrin units in the folded Zn_21 and Zn_22 form a rigid tweezer, with a spatial separation of approximately 12 and 13 Å from the center of the porphyrin units. Such distances are very suitable to sandwich a C₆₀ or C₇₀ molecule.²⁸ Trimer Zn₃3 may be considered a combination of two molecules of Zn_21 and the spatial separation between its neighboring porphyrin units should be comparable to that of Zn₂1. In principle, Zn₃3 may exist in a S- or C-shaped conformation, depending on the orientation of the two peripheral porphyrin units relative to the central porphyrin unit. The S-shaped conformation should be of lower energy considering that it avoids any possible steric hindrance, which is expected from the two peripheral porphyrin units in the C-shaped conformation.

The ¹H NMR spectra of Zn₂**1**, Zn₄**3**, and Zn₂**2** in chloroform-*d* are shown in Figure 1. All three spectra are of high resolution, and the signals in the downfield area have been assigned based on the 2D-NOESY experiments. Although in principle Zn₄**3** has two sets of different amide protons, only one single signal is exhibited for the NH protons in its ¹H NMR spectrum. It can be found that the signal of the amide protons of all the three compounds appears in the downfield area (10.34, 10.33, and 10.23 ppm, respectively). This observation supports the formation of the intramolecular three-centered O····H−N hydrogen bonding in these compounds. Dilution of their solutions in chloroform-*d* did not produce important shifting of signals (<0.008 ppm from 10 to 0.2 mM) in the ¹H NMR spectrum.

Figure 2. Partial ¹³C NMR spectrum of (a) C_{60} (2.0 mM), (b) Zn_21 (2.0 mM) + C_{60} (1:1), (c) Zn_22 (2.0 mM) + C_{60} (1:1), and (d) Zn_33 (1.0 mM) + C_{60} (2.0 mM) in CDCl₃ containing 5% CS₂ at 25 °C.

Moreover, the UV-vis absorbance (Soret band) of all three compounds in chloroform observes Beer's law in the concentration range of less than 50 μ M. These results show that the porphyrin units in these molecules do not significantly interact with each other both intramolecularly and intermolecularly.

Addition of 1 equiv of C_{60} to the solution of the three compounds in chloroform-d caused substantial change of several signals in their ¹H NMR spectrum.²⁹ For example, the signal of the amide proton of Zn₂1 shifted from 10.34 to 10.44 ppm, while its H-a signal moved from 9.54 to 9.96 ppm (Figure 1c). These observations can be rationalized by considering that encapsulation of C₆₀ within the porphyrin tweezer reduces the conformational flexibility of the porphyrins relative to the bisanthranilamide moiety³⁰ and consequently strengthens the intramolecular hydrogen bonding. This strengthened hydrogen bonding again increases the defielding effect of the C=O group to H-a.10,31 Similar downfield shifting was also observed for both Zn₄**3** ($\Delta\delta$: 0.07 ppm for NH and 0.26 ppm for H-a) and Zn_22 ($\Delta\delta$: 0.13 ppm for both NH and H-a) (parts e and g of Figure 1). All the results suggest a strong interaction between the porphyrin tweezers and C₆₀. Similar downfield shifting was also observed when C₆₀ was replaced with C₇₀. For example, when 1 equiv of C70 was added to the solution of Zn21 in chloroform-d, the NH and H–a signals ($\Delta \delta$ 0.12 and 0.46 ppm, respectively) of Zn₂1 moved downfield substantially (parts a and c of Figure 1). The values are even larger than those observed for Zn_21 induced by C_{60} , implying an even stronger interaction between the porphyrin receptor and C70 (vide infra).5a,b

Strong encapsulation of C_{60} by the porphyrin receptors was also supported by the ¹³C NMR spectroscopy (Figure 2). The spectrum of the 1:1 solution of C_{60} and Zn_21 , Zn_22 , and Zn_33 in chloroform and carbon disulfide revealed significant upfield shifting ($\Delta \delta$: -3.01, -2.94, and -3.10 ppm, respectively) of the C_{60} signal relative to that of the free C_{60} (143.03 ppm).³² This upfield shifting is obviously resulted from the shielding or ring current effect of the zinc porphyrin units of the receptors

⁽²⁹⁾ Both C₆₀ and C₇₀ are scarcely soluble in chloroform. Addition of the zinc porphyrin receptors substantially increases their solubility and the homogeneous phase, obtained after sonication, is stable at room temperature.

⁽³⁰⁾ The X-ray analysis reveals a torsion angle of 16° between the peripheral benzene and the central benzene in the solid state in the bisanthranilamide moiety, see ref 14c.

⁽³¹⁾ The defielding of the encapsulated C_{60} might also be partially responsible for the large downfield shifting of the H–a signal.

⁽³²⁾ All the spectra were recorded in chloroform-*d* containing 10% (v/v) of carbon disulfide, in which the ¹³C NMR spectrum of C_{60} could be recorded.

Figure 3. TLC (developed in iodine vapor) of (a) C_{60} ($R_f = ca. 1.0$, the spot is too pale to scan), (b) $Zn_2\mathbf{1} + C_{60}$ (1:1), (c) $Zn_2\mathbf{1} + C_{60}$ (2:1), and (d) $Zn_2\mathbf{1}$. TLC condition: silica gel plate/ CS_2 -CHCl₃ (1:2).

upon strong encapsulation of the guest.^{5a-c} Straight-phase thinlayer chromatography (TLC) analysis, which exhibited a new spot for the complexes, also indicated the formation of stable complexes between the receptors and C_{60} or C_{70} . As an example, Figure 3 provides the TLC result of the complexation of C_{60} by Zn_21 .

Upon addition of C₆₀ to the solution of the receptors in toluene, the Soret band of the receptors in the UV-vis spectrum was shifted notably (from 423.6 nm to 427.2, 427.0, and 427.1 nm, respectively, for Zn₂1, Zn₂1, and Zn₃3). Replacement of C_{60} with C_{70} of the identical concentration caused even larger red shift. The results are consistent with the above ¹H and ¹³C NMR observations, also suggesting strong electronic interaction between the porphyrin receptors and the fullerene guest.^{5a} As examples, parts a and b of Figure 4 present the UV-vis spectra of Zn_21 in toluene in the presence of incremental amount of C_{60} and C_{70} . Job's plot analysis based on the UV-vis experiments, as shown in Figure 5, supported a 1:1 stoichiometry for complexes $Zn_21:C_{60}$ and $Zn_22:C_{60}$ and a 1:2 stoichiometry for complex Zn₃3:C₆₀, which exhibited a largest change of absorbance at the 1:1 and 1:2 ratio of the receptor and C₆₀ when the total concentration of the two samples was kept unchanged.^{33,34} The ¹H NMR spectra for $[Zn_21]:[C_{60}] = 1:0-1:3$ in chloroform-d at 25 °C revealed a saturation of complexation-induced chemical shift change at $[Zn_21]:[C_{60}] = 1:0$ (see Figure 1S in Supporting Information), also supporting the 1:1 stoichiometry of their complex. Figure 6 shows the proposed binding mode for the 1:1 and 1:2 complexes. Because C₇₀ exhibits a stronger binding affinity than C_{60} ,^{28a} it is reasonable to consider that its complexes with the porphyrin receptors should have similar binding mode.

The association constants (K_a) of complexes $Zn_2\mathbf{1}\cdot C_{60}$ and $Zn_2\mathbf{2}\cdot C_{60}$ in toluene were then evaluated by the UV-vis titration method. The absorption spectral change of the receptors induced by addition of C_{60} displayed a clear isosbestic point both at 429 nm (Figure 3a). On the basis of the change values of absorbance with [C_{60}], we estimated the K_a of the two complexes to be $1.0 (\pm 0.1) \times 10^5$ and $2.7 (\pm 0.2) \times 10^4 \text{ M}^{-1}$, respectively.³⁵

Similar spectroscopic changes were also observed when incremental amount of C_{70} was added to the solution of Zn_21 and Zn_22 in toluene and the K_a of complexes $Zn_21 \cdot C_{70}$ and $Zn_22 \cdot$ C_{70} was determined to be 1.1 (±0.1) × 10⁶ and 9.8 (±1.2) × 10^5 M^{-1} , respectively, by the same method. The association constant of $Zn_21 \cdot C_{70}$ and $Zn_22 \cdot C_{70}$ is pronouncedly greater than that of the corresponding C_{60} complexes. This is in accordance with the above ¹H NMR observation and implies that the complexation of C_{70} by the porphyrin receptors occurs mainly at its equatorial region rather than its poles.^{5b} Such a binding mode can lead to greater $\pi - \pi$ contact area from the less curved region of C_{70} to the porphyrin units of the receptors.^{28a}

The Job's plot study described above has established that receptor Zn_33 can complex two fullerene molecules. Also from the UV-vis titration experiments, we determined the apparent association constant K_a of the single porphyrin tweezer of Zn_33 with C_{60} and C_{70} in toluene to be 1.5 (± 0.1) × 10⁴ and 6.7 (± 1.0) × 10⁴ M⁻¹, respectively.³⁶ The association constant of the present complexes are pronouncedly higher than that of the complexes of C_{60} with the palladium-linked bisporphyrin "jaws", reported by Boyd and Reed et al.,¹⁸ demonstrating that the intramolecular hydrogen bonding in the present receptors plays an important role in increasing the binding affinity of the new preorganized foldamer receptors toward fullerene guest.

In principle, incorporation of two C_{60} units into one guest molecule would double the binding site and should, in the absence of large steric hindrance, increase its binding affinity to receptor Zn₃**3**. On the basis of this consideration, C_{60} dimer **24** was designed and prepared from amine **23**, which could be produced conveniently from the reaction of C_{60} , glycine and dodecyl aldehyde in refluxing chlorobenzene.³⁷ For the sake of comparison, compound **25** was also prepared from the acylation of **23**. Introduction of the long aliphatic chains provides both 24 and **25** with good solubility in chloroform and toluene.

Mixing the same equivalents of Zn_33 with 24 in chloroform-d also led to significant change of the signals of both molecules in the ¹H NMR spectrum. Especially, the NH signal of the receptor moved downfield remarkably, as observed above for the complex of Zn_21 with C_{60} or C_{70} . Similar shifting was also observed in the ¹H NMR spectrum of the solution of Zn_21 with 25. These results clearly showed that important interaction also occurs between Zn_21 and the new C_{60} derivatives. Quantitative binding behavior between Zn₃3 and 24 and 25 was investigated in chloroform and toluene with the UV-vis titration method. The UV-vis spectra of Zn_33 in chloroform, obtained with addition of incremental amount of 24 and 25, are provided in parts c and d of Figure 4. The data obtained upon addition of 24 to the solution of Zn_33 in chloroform were fit to a 1:1 binding mode, giving $K_a = 1.8 \ (\pm 0.2) \times 10^7 \ \mathrm{M}^{-1}$ for complex Zn₃3· 24. The K_a of Zn₃**3**·24 in toluene is obviously beyond the limit of the UV-vis titration method,^{28b} because the absorbance change was linearly dependent on the concentration of 24 when 0-1 equiv of 24 was added and became unchanged when more amount of 24 was added. By virtue of the analysis method described above for the complexes of Zn_33 and C_{60} or C_{70} , the

⁽³³⁾ Job, P. Ann. Chim. Ser. 10 1928, 9, 113.

⁽³⁴⁾ The ¹H NMR titration experiments in chloroform-*d* also revealed that the NH and H–a signals of Zn₂1 shifted downfield with the addition of C_{60} and achieved the maximum values when 1 equiv of C_{60} was added. Further addition of C_{60} did not cause shifting of the signals, and the C_{60} added was not dissolved neither.

⁽³⁵⁾ Conners, K. A. Binding Constants: The Measurement of Molecular Complex Stability Wiley: New York, 1987.

⁽³⁶⁾ The apparent association constant may be regarded as the averaged value of the K_a of the discrete zinc porphyrin tweezers when the receptor contains more than one zinc porphyrin tweezers. For a recent example of the method, see: Li, W.-S.; Jiang, D.-L.; Suna, Y.; Aida, T. J. Am. Chem. Soc. 2005, 127, 7700.

⁽³⁷⁾ Herranz, M. A.; Illescas, B.; Martin, N.; Luo, C.; Guldi, D. M. J. Org. Chem. 2000, 65, 5728.

Figure 4. Absorption spectral changes of Zn_21 (1.5 μ M) upon addition of (a) C_{60} and (b) C_{70} in toluene at 25 °C. Absorption spectral changes of Zn_33 (0.67 μ M) upon on addition of (c) **24** and (d) **25**. All the spectra were recorded in chloroform at 25 °C (the absorbance of the fullerene unit had been subtracted from the spectra; inset, the plot of the absorbance change vs [C_{60}] or [C_{70}]).

Figure 5. Job's plots: absorbance change of the Soret band at 428 nm of (a) Zn_21 vs $[Zn_21]/([Zn_21] + [C_{60}])$ and (b) Zn_33 vs $[Zn_33]/([Zn_33] + [C_{60}])$ in toluene at 25 °C (the overall concentration = 5.0×10^{-6} M).

apparent association constant K_a for the complex of the single tweezer of Zn₃3 with 25 in chloroform and toluene was determined to be 1.3 (± 0.1) × 10⁴ and 8.6 (± 0.8) × 10⁴ M⁻¹, respectively. The stability of $Zn_33 \cdot 24$ is substantially higher than that of the complex of Zn_33 and 25 due to the doubling of its binding site (Figure 7). On the basis of the UV-vis titration, the K_a of complexes Zn₂1·25 and Zn₂2·25 in chloroform and toluene was also evaluated to be 1.6 (± 0.2) × 10⁴ and 6.0 (± 1.0) \times $10^4~M^{-1}$ and 7.9 (±1.2) \times 10^3 and 1.2 (±0.1) \times $10^4~M^{-1},$ respectively. Compared to that of the complexes of C_{60} , the stability of the complexes of 25 is notably decreased as a result of the additional aliphatic moiety in 25. To explore the influence of the solvent polarity on the binding affinity, the K_a of complex $Zn_21 \cdot 25$ in mixture of chloroform and methanol (9:1 v/v) was also evaluated, which gave rise to a value of 2.3 (± 0.3) $\times 10^3$ M^{-1} . The value is pronouncedly smaller than that of the complex

obtained in chloroform, indicating that the addition of polar methanol would weaken the intramolecular hydrogen bonding of the receptor and consequently reduced its preorganization.

The complexing behavior of **24** by Zn₂**1** and Zn₂**2** was also investigated. Job's plot studies based on the UV-vis experiments revealed a 1:1 stoichiometry for their complexes in both chloroform and toluene (see Figure 2S in Supporting Information). The corresponding association constant in chloroform and toluene was evaluated to be 4.7 (\pm 0.1) × 10⁴ and 7.6 (\pm 0.6) × 10⁵ for Zn₂**1**·24 and 4.1 (\pm 0.4) × 10⁴ and 1.8 (\pm 0.2) × 10⁵ for Zn₂**2**·24, respectively. It can be found that the stability of Zn₂**1**·24 and Zn₂**2**·24 in toluene is significantly higher than that of the corresponding complexes Zn₂**1**·C₆₀ and Zn₂**2**·C₆₀ but substantially lower than that of Zn₃**3**·24 in chloroform of high polarity. This result reflects that the existence of the second C₆₀ unit in **24** may promote the binding stability of Zn₂**1**·24

Figure 6. The binding mode for complexes (a) $Zn_21 \cdot C_{60}$, (b) $Zn_22 \cdot C_{60}$, and (c) $Zn_33 \cdot 2C_{60}$.

Figure 7. The proposed binding mode for complex $Zn_33.24$.

and $Zn_22\cdot 24$ by additional aromatic interaction with the porphyrin unit of the receptors, as shown in Figure 8 (with Zn_21 as example). Such additional interaction is obviously of low efficiency compared to that between C_{60} and the porphyrin units of a tweezer. The fact that three-component complexes $(Zn_21)_2$ · 24 and $(Zn_22)_2\cdot 24$ were not formed (in measurable amount) implies a large spatial repulsion might exist between the two large bisporphyrin molecules in such possible tricomponent complexes. Only one set of signals was displayed in the downfield area of the ¹H NMR spectrum of both complexes in

Figure 8. Dynamic exchanging process for complex Zn₂1·24.

chloroform-*d* and did not split even under reduced temperature. This observation indicates that the exchanging process for complexes $Zn_21\cdot 24$, as shown in Figure 8, and $Zn_22\cdot 24$ is quick on the ¹H NMR time scale.

Fluorescent studies revealed that the emission of the zinc porphyrin units of the receptors could be efficiently quenched by the fullerene guests. All the receptors exhibited typical emission bands of the zinc porphyrin units at ca. 606 and 643 nm upon excitation at the isosbestic point of their Soret band.³⁸ The quenching results of the first emission with fullerene receptors in toluene are provided in Table 1. It can be found that the quenching efficiency of Zn₃3 by 24 is substantially higher than any other receptor-guest system. This result is consistent with the above UV-vis investigation, reflecting the remarkably increased complexing affinity between Zn₃3 and 24 due to the doubling of their binding site. Figure 9 presents the fluorescent spectra of Zn₃3 in toluene in the presence of increasing amount of 24. The emission of the porphyrin units of Zn_33 could not be quenched completely even in the presence of excessive 24,¹⁹¹ which may be rationalized by considering that the complexation is a dynamic process and there is always a small amount of free Zn_33 in the solution. On the basis of the change of the emission strength at 606 nm with [24], the K_a of complex Zn₃3·24 was evaluated to be 3.4 (\pm 0.4) × 10⁸ M^{-1.39} For the sake of comparison, the K_a of complex $Zn_21 \cdot 25$ in

⁽³⁸⁾ Solladié, N.; Walther, M. E.; Gross, M.; Duarte, T. M. F.; Bourgogne, C.; Nierengarten, J.-F. *Chem. Commun.* **2003**, 2412.

^{(39) (}a) Hauke, F.; Swartz, A.; Guldi, D. M.; Hirsch, A. J. Mater. Chem. 2002, 12, 2088. (b) D'Souza, F.; Chitta, R.; Gadde, S.; Zandler, M. E.; McCarty, A. L.; Sandanayaka, A. S. D.; Araki, Y.; Ito, O. Chem. – Eur. J. 2005, 11, 4416. (c) Sessler, J. L.; Jayawickramarajah, J.; Gouloumis, A.; Torres, T.; Guldi, D. M.; Maldonado, S.; Stevenson, K. J. Chem. Commun. 2005, 1892.

Table 1. Fluorescent Quenching Data of Receptors Zn₂1, Zn₂2, and Zn₃3 by the Fullerene Guests in Toluene at 25 °C

			I ^b ([I ₀ -	- /]// ₀) ^c		(M) ^{<i>d</i>}			
	I_0^a	C ₆₀	C ₇₀	24	25	[C ₆₀]	[C ₇₀]	[24]	[25]
Zn_21	262	252 (0.04)	165 (0.24)	179 (0.32)	230 (0.12)	3.7×10^{-5}	3.1×10^{-6}	1.5×10^{-6}	$8.0 imes 10^{-6}$
Zn_22	248	235 (0.03)	199 (0.24)	225 (0.12)	238 (0.04)	3.1×10^{-5}	2.8×10^{-6}	9.1×10^{-6}	3.4×10^{-5}
Zn_3 3	221	212 (0.04)	165 (0.25)	10 (0.95)	195 (0.04)	3.8×10^{-5}	2.8×10^{-6}	2.8×10^{-7}	8.6×10^{-6}

^{*a*} Values of pure receptors at [porphyrin] = 2.0×10^{-6} M. ^{*b*} Values when 1 equiv of fullerene guest ([fullerene] = 2.0×10^{-6} M) was added. ^{*c*} Quenching efficiency. ^d Guest concentration at $[I_0 - I]/I_0 = 0.5$.

Figure 9. Fluorescence spectral changes of Zn_33 (7.0 × 10⁻⁷ M) upon addition of 24 (0–5.0 \times 10⁻⁶ M) in toluene at 25 °C. Excitation wavelength = 429 nm at the isosbestic point of the UV-vis spectra. Inset: the plot of change emission intensity at 606 nm vs [24].

chloroform and the apparent K_a of complexes of Zn_33 with C_{60} and C₇₀ in toluene were also evaluated by the fluorescent titration method, which afforded a value of 1.8 (± 0.1) × 10⁴, 1.4 (±0.2) × 10⁻⁴, and 7.4 (±1.1) × 10⁻⁴ M⁻¹, respectively. These results are in good accordance with those estimated from the UV-vis titration method.

Given the strong complexing feature between the foldamerbased porphyrin tweezers and the fullerene guests, the possibility of supramolecular chiral induction through complexation of the foldamer receptors toward chiral C₆₀ derivative 29 was explored.^{40,41} The synthesis of **29** is shown in Scheme 5. Briefly, treatment of 26 with 27 in chloroform in the presence of DCC afforded 28, which reacted with C_{60} in hot toluene to give 29. The K_a of complexes $Zn_2 \mathbf{1} \cdot \mathbf{29}$ and $Zn_2 \mathbf{2} \cdot \mathbf{29}$ in chloroform was evaluated to be 3.2 (± 0.3) × 10³ and 1.5 (± 0.2) × 10³ M⁻¹, while the apparent K_a of the complex of the single tweezer of Zn₃**3** with **29** was determined to be 2.6 (± 0.3) × 10³ M⁻¹. The values are notably lower than that of the corresponding complexes of 25, which can be attributed to the increased size of the aliphatic moiety of 29 relative to that of 25. Adding R-29 or S-29 to the solution of the porphyrin receptors in chloroform led to the generation of induced circular dichroism (CD) of mirror image, as shown in Figure 10 (the CD spectrum of the C_{60} guest had been subtracted). The spectral modes of the complexes of Zn₂1 and Zn₂2 are comparable, reflecting a similar pattern of chiral induction. In contrast, Zn₃3 displays a strong Cotton effect in region of the porphyrin Soret band. The results may be ascribed to the different orientation of the two chiral guest molecules, relative to each other, in the three-component

Scheme 4

complexes, which lead to a different orientation of the three poprhyrin chromophores in Zn_33 . Although the relative strength is significantly varied, the Cotton effects between 500 and 650 nm of all the porphyrin receptors do not shift significantly.

Conclusion

In summary, we have described the self-assembly of a new class of molecular tweezers whose rigid skeletons are constructed based on the intramolecular hydrogen-bonding-driven aromatic amide foldamers. The new zinc porphyrin-based, wellordered tweezers represent new efficient nonring receptors for complexation of fullerene and fullerene-derived molecules. Because of their preorganized rigid conformation, the new folding receptors exhibit a fullerene-binding ability that can be

A chiral porphyrin-C60 triad had been reported, see: Kessinger, R.; Thilgen, (40)

⁽⁴⁰⁾ A cliniar polphylm-C₆₀ unad nad oben reported, see: Ressinger, R., Finger, C.; Mordasini, T.; Diederich, F. *Helv. Chim. Acta* **2000**, *83*, 3069.
(41) (a) Huang, S.; Nakanishi, S.; Berova, N. *Chirality* **2000**, *12*, 237. (b) Pescitelli, G.; Gabriel, S.; Wang, Y.; Fleischhauer, J.; Woody, R. W.; Berova, N. *J. Am. Chem. Soc.* **2003**, *125*, 7613.

Figure 10. The induced CD spectra in chloroform at 25 °C. (1) Zn_21 (3.3 × 10⁻⁴ M) in the presence of *S*-29 (3.3 × 10⁻³ M) (a), *R*-29 (3.3 × 10⁻³ M) (b), and *R*-29 (6.6 × 10⁻³ M) (c); (2) Zn_22 (3.3 × 10⁻⁴ M) in the presence of *S*-29 (3.3 × 10⁻³ M) (a) and *R*-29 (3.3 × 10⁻³ M) (d) and Zn_33 (2.3 × 10⁻⁴ M) in the presence of *S*-29 (3.3 × 10⁻³ M) (a) and *R*-29 (3.3 × 10⁻³ M) (b) and *R*-29 (3.3 × 10⁻⁴ M) in the presence of *S*-29 (3.3 × 10⁻³ M) (a) and *R*-29 (3.3 × 10⁻⁴ M) in the presence of *S*-29 (3.3 × 10⁻³ M) (c).

 Table 2.
 Summary of the Association Constants of the New

 Porphyrin–Fullerene Complexes Determined by the UV–Vis
 Titration Method

complex	$K_{\rm a} ({\rm M}^{-1})$	solvent	complex	<i>K</i> _a (M ⁻¹)	solvent
$Zn_21\cdot C_{60}$	1.0×10^5	toluene	$Zn_21 \cdot C_{70}$	1.1×10^{6}	toluene
$Zn_22 \cdot C_{60}$	2.7×10^{4}	toluene	$Zn_22 \cdot C_{70}$	9.8×10^{5}	toluene
$Zn_3 3 \cdot C_{60}^{b}$	$1.5 \ 10^4$	toluene	$Zn_3 3 \cdot C_{70}^{b}$	6.7×10^{4}	toluene
$Zn_3 3 \cdot C_{60}^{b,c}$	1.4×10^4	toluene	$Zn_3 3 \cdot C_{70}^{b,c}$	7.4×10^4	toluene
Zn ₂ 1·24	7.6×10^5	toluene	Zn ₂ 1·24	4.7×10^4	chloroform
Zn ₂ 2·24	1.8×10^5	toluene	Zn ₂ 2·24	4.1×10^4	chloroform
Zn ₃ 3·24	1.8×10^{7}	chloroform	Zn ₃ 3·24 ^c	3.4×10^{8}	toluene
Zn ₂ 1·25	6.0×10^{4}	toluene	Zn ₂ 1·25	1.6×10^{4}	chloroform
Zn ₂ 1·25	2.3×10^{3}	chloroform ^d	Zn ₂ 1·25 ^c	1.8×10^4	chloroform
Zn ₂ 2·25	1.2×10^{4}	toluene	Zn ₂ 2·25	7.9×10^{3}	chloroform
$Zn_3 \cdot 25^b$	8.6×10^4	toluene	Zn ₃ 3·25 ^b	1.3×10^{4}	chloroform
Zn ₂ 1·29	3.2×10^{3}	chloroform	Zn ₂ 2·29	1.5×10^{3}	chloroform
Zn ₃ 3·29 ^b	$2.6 imes 10^3$	chloroform			

^{*a*} The association constants are typically averages of two experiments at 25 °C. ^{*b*} Apparent association constant, representing the average binding ability of the single tweezer of the receptor to the fullerene guest. ^{*c*} Determined by the fluorescent titration method. ^{*d*} With 10% (v) of methanol.

comparable to the cyclic bisporphyrin receptors.^{5a} The association constants of the new complexes are summarized in Table 2. The results well demonstrate the great potential of hydrogen bonding-induced foldamers or related well-ordered rigid architectures as building blocks or scaffolds for developing new synthetic receptors, which opens new possibility in molecular recognition and self-assembly.

Acknowledgment. This work is supported by the Ministry of Science and Technology (No. 200007801), the National Natural Science Foundation of China (No. 20321202, 90206005, 20372080, 20332040, and 20425208), and the Chinese Academy of Sciences for financial support. We also thank Prof. Li-Zhu Wu for beneficial discussion.

Supporting Information Available: Detailed experimental procedures and characterization of the intermediates and target molecules, examples of the ¹H NMR, UV–vis and fluorescent titration spectra, methods for evaluating the association constants and binding stoichiometry, energy-minimized conformation of the receptors, and complete ref 11a. This material is available free of charge via the Internet at http://pubs.acs.org.

JA056509H